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Computerized Algorithm

Cat vs Dog

Astrocytoma vs Oligodendroglioma
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Computerized Algorithm

Q: Whether the centroid pixel is a part of 
building or not?

Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2017, July). Can semantic labeling methods generalize to any city? the inria aerial 
image labeling benchmark. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 3226-3229). IEEE.
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Computerized Algorithm

Q: Whether the centroid pixel is a part of 
building or not?

Yes vs No

In this case => Still, yes
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Computerized Algorithm

Q: Whether the centroid pixel is a part of 
building or not?

Q: How about the other pixels?
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Q: How about the other pixels?
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lesion
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Computerized Algorithm

https://www.pyimagesearch.com/2018/09/03/semantic-segmentation-with-opencv-and-deep-learning/

Multiple classes for urban scene understanding

https://www.pyimagesearch.com/2018/09/03/semantic-segmentation-with-opencv-and-deep-learning/
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Y = F(X, θ)
• Y – Output/Label
• X – Feature Vectors
• F – Classifier
• Θ – Classifier’s

Learnable Parameters
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Learning based 
Image Content Classification

Task Formulation

Albert Cardona, Stephan Saalfeld, Stephan Preibisch, Benjamin Schmid, Anchi Cheng, Jim Pulokas, Pavel Tomancak and Volker 
Hartenstein (10, 2010), "An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial 
Section Electron Microscopy", PLoS Biol (Public Library of Science) 8 (10): e1000502, doi:10.1371/journal.pbio.1000502

Segmentation

• The ISBI 2012 EM Segmentation Challenge dataset contains 30 ssTEM images taken from
Drosophila larva ventral nerve cord (VNC).

• The objective is to segment the neuron membranes as indicated in the ground truth masks.
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Segmentation

• The ISBI 2012 EM Segmentation Challenge dataset contains 30 ssTEM images taken from
Drosophila larva ventral nerve cord (VNC).

• The objective is to segment the neuron membranes as indicated in the ground truth masks.
• Patch Extraction: Crop small patches of size 3 x 3 from the original ssTEM images
• Q: For each patch extracted, whether its centroid pixel is part of neuron membranes?

Task Formulation

Patch Classification

Learning based 
Image Content Classification



33Advanced Research TalkChaoyi Z. Learning based Visual Content Analysis and Processing

Figure: Pipeline of framework proposed in (Iftikhar and Godil, 2013)

Iftikhar, S. and Godil, A. (2013). Feature measures for the segmentation of neuronal membrane using a machine learning algorithm. In Sixth 
International Conference on Machine Vision (ICMV 2013), volume 9067, page 90670V. International Society for Optics and Photonics.

Framework Design

Learning based 
Image Content Classification
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(Deep) Learning based Framework
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Deep Learning based Image Segmentation
U-Net Architecture Design

Figure: U-Net Architecture (Ronneberger et al., 2015)

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In 
International Conference on Medical image computing and computer-assisted intervention, pages 234–241. Springer.
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Hold on… Hold on … Hold on …
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---- A Quick Introduction

Deep Learning for Visual Content Analysis and Processing

Deep (Convolutional) Neural Network

Network Learning Procedure
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---- A Quick Introduction

Deep Convolutional Neural Network & Its Learning Procedure

CNN Components:
• Convolution Layer
• Activation Layer
• Pooling Layer
• Batch Normalization Layer
• Dropout Layer
• Fully Connected Layer
• … 

Convolution Layer

*Recall Convolution Operation From W01-Lecture

- Number of kernels: more than 1 kernel
- Learnable weights (instead of hand-crafted ones, 

like smooth filter or sharpen filter )
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---- A Quick Introduction

Deep Convolutional Neural Network & Its Learning Procedure

CNN Components:
• Convolution Layer
• Activation Layer
• Pooling Layer
• Batch Normalization Layer
• Dropout Layer
• Fully Connected Layer
• … 

Activation Layer
• Sigmoid
• Relu
• Tanh
• Softmax
• LeaklyRelu
• …
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---- A Quick Introduction

Deep Convolutional Neural Network & Its Learning Procedure

CNN Components:
• Convolution Layer
• Activation Layer
• Pooling Layer
• Batch Normalization Layer
• Dropout Layer
• Fully Connected Layer
• … 

Pooling Layer

• Max-pooling
• Average-pooling
• Global Max-pooling
• Global Average-pooling
• …
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---- A Quick Introduction

Deep Convolutional Neural Network & Its Learning Procedure

CNN Components:
• Convolution Layer
• Activation Layer
• Pooling Layer
• Batch Normalization Layer
• Dropout Layer
• Fully Connected Layer
• … 

Let’s design a toy CNN!
for an image classification task:
• Input (X): images (3, 32, 32)
• Output (Y): 10 classes

Krizhevsky, Alex. (2012). Learning Multiple Layers of Features from Tiny Images. University of Toronto.
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---- A Quick Introduction

Deep Convolutional Neural Network & Its Learning Procedure

Let’s design a toy CNN!
for an image classification task:
• Input (X): images (3, 32, 32)
• Output (Y): 10 classes

(Personal Preference)  Pytorch > Tensorflow > Keras



54Advanced Research TalkChaoyi Z. Learning based Visual Content Analysis and Processing

---- A Quick Introduction

Deep Convolutional Neural Network & Its Learning Procedure

Learning Elements:
• Loss Functions
• Training Policy: Back-

propagation
• Optimizer 
• Scheduler
• Data Augmentation
• …

How to train it?
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Loss Functions
• A loss function is used to compute the model’s prediction accuracy from the outputs

• The training objective is to minimise this loss, 
via iteratively updating the network parameters

• The loss guides the backpropagation process to train the CNN model 
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Deep Convolutional Neural Network & Its Learning Procedure

Learning Elements:
• Loss Functions
• Training Policy: 

Back-propagation
• Optimizer 
• Scheduler
• Data Augmentation
• …

Loss Functions
Goal: obtain an optimal set of weights, resulting in the minimum loss.

How to achieve that?
• Find the weights that make the derivative of loss function equals zero,
i.e., local extrema.

• Iterative approach: Gradient Descent optimization algorithm
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---- A Quick Introduction

Deep Convolutional Neural Network & Its Learning Procedure

Learning Elements:
• Loss Functions
• Training Policy: 

Back-propagation
• Optimizer 
• Scheduler
• Data Augmentation
• …

Training with Back-propagation 
Backpropagation is commonly used by the gradient descent optimization 
algorithm to adjust the weight of neurons by calculating the gradient of the loss 
function;

http://hmkcode.com/ai/backpropagation-step-by-step/
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---- A Quick Introduction

Deep Convolutional Neural Network & Its Learning Procedure

https://towardsdatascience.com/convolutional-neural-networks-for-all-part-i-cdd282ee7947 

Traditional Approach vs DL 
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https://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/ 

Visualization of Learnable Weights
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---- A Quick Introduction

Deep Convolutional Neural Network & Its Learning Procedure

• He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 770-778).

• Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708).

• Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 7132-7141).

ResNet DenseNet SENet
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Back to our case study of deep learning based image segmentation…
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Deep Learning based Image Segmentation
U-Net Architecture Design

Figure: Border pixels, which are visualized in red, are assigned with large weights.
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