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Abstract. Due to the complex morphology of fine vessels, it remains
challenging for most of existing models to accurately segment them, par-
ticularly the capillaries in color fundus retinal images. In this paper, we
propose a novel and lightweight deep learning model called Vessel-Net
for retinal vessel segmentation. First, we design an efficient inception-
residual convolutional block to combine the advantages of the Inception
model and residual module for improved feature representation. Next,
we embed the inception-residual blocks inside a U-like encoder-decoder
architecture for vessel segmentation. Then, we introduce four supervision
paths, including the traditional supervision path, a richer feature super-
vision path, and two multi-scale supervision paths to preserve the rich
and multi-scale deep features during model optimization. We evaluated
our Vessel-Net against several recent methods on two benchmark retinal
databases and achieved the new state-of-the-art performance (i.e. AUC of
98.21%/98.60% on the DRIVE and CHASE databases, respectively). Our
ablation studies also demonstrate that the proposed inception-residual
block and the multi-path supervision both can produce impressive per-
formance gains for retinal vessel segmentation.
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1 Introduction

Retinal vessel segmentation in color fundus images has been widely used for
quantitative analysis of ophthalmologic diseases including diabetic retinopathy
(DR) and glaucoma [1]. However, it remains challenging to achieve accurate seg-
mentation of retinal vessels, especially the capillaries and other fine structures,
largely due to the complex vessel morphology (e.g. the thin and curved vessel).
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Traditionally, retinal vessel segmentation has been conducted by designing
filter-based features to capture the unique morphological characteristics of ves-
sels. For instance, various types of filters were used to extract the 41-dimensional
visual features to describe retinal vessels [2], and a combination of shifted filter
responses (COSFIRE) [3] was designed to segment the retinal vessels in fundus
images. Recently, deep learning (DL) has been adopted to perform vessel segmen-
tation with promising results. Several data augmentation algorithms were intro-
duced to augment limited training data [4]. In addition, an unsupervised model
with image matting was proposed to segment retinal vessels [5]. The additional
labels of thick and thin vessels were introduced explicitly and an edge-based
mechanism was incorporated into U-Net to achieve a better result [6]. Further-
more, the conditional random field (CRF) method was used for post-processing
[7]. A cascaded architecture with multi-scale refinement was also proposed to fur-
ther improve the segmentation performance [8]. While these DL-based methods
have reported encouraging results, we hypothesize that the vessel segmentation
performance can be further improved by more effective modeling the multi-scale
visual information associated with vessels with varying thickness.

In this paper, we propose a novel and highly effective deep learning model
called Vessel-Net for retinal vessel segmentation in color fundus images. The
Vessel-Net contains five inception-residual (IR) blocks for better feature repre-
sentation, and each IR block contains three parallel paths including one residual
convolutional layer and two enhancement paths. To the best of our knowledge, we
are the first to combine the advantages of Inception and residual methods for reti-
nal vessel segmentation, without introducing too many additional parameters.
Furthermore, we design four supervision paths called multi-path supervision to
train the proposed Vessel-Net, in which the richer feature supervision combines
all feature maps of our Vessel-Net and multi-scale supervision further preserves
multi-scale features. With this multi-path supervision, multi-scale complemen-
tary information can be better preserved, which is critical to the segmentation
of fine structures.

We evaluated our Vessel-Net against several recent retinal vessel segmen-
tation algorithms on two benchmark databases: the digital retinal images for
vessel extraction (DRIVE) database [9] and the child heart and health study
(CHASE) database [10]. Our results show that the proposed Vessel-Net, even
without adjusting any hyper-parameters for each experiment, achieves the area
under the ROC curve (AUC) of 98.21% on DRIVE and 98.60% on CHASE and
sets the new state of the art.

2 Method

The proposed Vessel-Net has a U-like encoder-decoder architecture, which con-
tains five IR blocks, 2 x 2 convolutional layers, up-sampling layers, and four
supervision paths (see Fig. 1). The convolutional layers with 2 x 2 kernels and a
stride of 2 are designed to contract the feature maps, whereas the corresponding
2 x 2 up-sampling layers are used to expand the feature maps. Hence, the Vessel-
Net takes 48 x 48 patches extracted from pre-processed retinal images as input
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and produces the vessel probability maps with the same size. We now delve into
the details of the IR block and multi-path supervision.
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Fig. 1. Diagram of the proposed Vessel-Net.

2.1 Inception-Residual Block

The U-Net and its variants, such as the recurrent residual U-Net (R2U-Net) [11],
are popular semantic segmentation tools, which have shown promising perfor-
mance in many biomedical image applications [12]. The convolutional block in
U-Net contains, sequentially, a 3 x 3 convolutional layer, a dropout layer, and
another 3 x 3 convolutional layer (see Fig. 2). Nevertheless, convolutional block in
R2U-Net consists of a 1 x 1 convolutional layer and two 3 x 3 convolutional layers,
and replaces the dropout layer with skip connections and backward connections
to achieve the recurrent learning (see Fig. 2).

To widen the model while avoiding superabundant parameters, we design
the IR block (see Fig.2) to replace the convolutional blocks in U-like networks
for a higher feature representation capability. Specifically, we remove backward
connections in the convolutional block of R2U-Net, then introduce two parallel
enhancement paths (one includes a 1 x 1 convolutional layer, and the other is a
skip connection from the input to output), and finally use a concatenation layer
to combine the outputs of three parallel paths. Another difference between the IR
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block and the convolutional blocks in U-Net and R2U-Net is that we use dilated
convolutions with a dilation rate of 2 and 3 in two 3 x 3 adjacent convolutional
layers, respectively, to realize a large field of view. Compared to Inception block
[13], the lightweight IR block does not leverage the convolutional layer of large
kernels to extract features since it would cause over-fitting when the training
data of retinal vessels is highly limited. Note that, each convolutional layer, with
a stride of 1, is followed by the ReLU activation and a batch normalization layer
to reduce over-fitting as much as possible.

As shown in Fig. 1, the channels of five IR blocks in our Vessel-Net are 32,
64, 128, 64 and 32 from top to bottom.
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Fig. 2. U-Net block (left), R2U block (middle) and the proposed IR block (right).

2.2  Multi-path Supervision

It has been acknowledged that all feature maps contain essential image details
and well deserve to be preserved [14,15]. This is especially true for vessel images,
which contain complex structures at different scales. Therefore, we resize the
feature maps produced by all IR blocks to 48 x 48 using the corresponding up-
sampling layers, concatenate them, and thus feed them to a 1 x 1 convolutional
layer followed by the ReLLU activation and a Softmax layer to generate an auxil-
iary output rP (see Fig. 1). This output path enables the feature maps obtained
at different depths to be preserved and further processed to provide the richer
feature supervision to model training. In addition, we feed the outputs of the 3rd
and 4th IR block to a 1 x 1 convolutional layer followed by the ReLU activation
and a Softmax layer, respectively, resulting in a 12 x 12 output msP; and a
24 x 24 output msPy;. These two paths enable the feature maps at two scales to
provide the multi-scale supervision to model training. Therefore, Vessel-Net has
four outputs, and hence the total loss can be defined as follows:

4
Loss = CE(P,GT) + Ay x CE(rP,GT) + Y _ \; x CE(msP;,msGT;) (1)
=3
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where C'E represents the categorical cross-entropy function, P is the vessel prob-
ability map generated by the decoder, G1T" is the ground truth, msGT3; and
msGTy denote the ground truth of size 12 x 12 and 24 x 24, respectively, and
the weight parameters Ao ~ A4 represent the balance among four outputs. The
msGT3 and msGT, were obtained by down-sampling GT via 2 X 2 and 4 x 4
max-pooling, respectively.

Consequently, the proposed Vessel-Net is trained under the main supervision
provided by the decoder, the richer feature supervision, and two types of multi-
scale supervision. Thus, the complementary information acquired by five IR
blocks can be combined to explore the effective representations of vessels of
variable scales/thicknesses.

3 Experiments

3.1 Database

We evaluated the proposed Vessel-Net on the DRIVE database and CHASE
database, which contain 40 color fundus retinal images of size 584 x 565 and 28
color fundus retinal images of size 999 x 960, respectively. The DRIVE database is
officially split into two equal subsets for training and testing. In both databases,
each retinal image is equipped with two manual annotations. To make fair com-
parative evaluation, we adopted the following settings in the literature: (1) using
the first manual annotation as the ground truth and the second one as a human
observer’s segmentation [9]; (2) splitting the CHASE database into a training
set of 20 images and a testing set of 8 images [8,16]; and (3) generating manually
the field of view (FOV) mask for each image in the CHASE database [8,16,17].

3.2 Implementation Details

Fundus images were pre-processed by using the CLAHE [18], gamma adjusting
and database normalization algorithms to reduce noise and improve contrast. In
the training stage, we first randomly extracted 24.5K partly overlapped 48 x 48
patches in each pre-processed fundus image, resulting in a training set of 490K
patches on each database. Then, we adopted the mini-batch stochastic gradient
descent (mini-batch SGD) with a batch size of 32 as the optimizer, and set
empirically the weight parameters Ay ~ Ay to 1, 1/3 and 2/3, respectively, the
learning rate to 0.01, and the maximum epoch number to 150. Note that we
used the same settings of hyper-parameters on both databases to demonstrate
the robustness of our proposed Vessel-Net.

In the testing stage, we extracted 48 x 48 patches with a stride of 5 along
both horizontal and vertical directions, and then fed each of them to the trained
Vessel-Net. To recompose the entire images, we averaged the obtained probability
maps of partly overlapped patches. Finally, we applied the threshold of 0.5 to the
recomposed vessel probability map to generate the binary segmentation result.
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Fig. 3. Two examples of retinal images (1st column) from the DRIVE (top row) and
CHASE (bottom row) databases, the segmentation results of U-Net (2nd column) and
the proposed Vessel-Net (3rd column), and the ground truth (4th column). The samples
of thin and thick vessels are pointed by blue and yellow arrows, respectively. (Color
figure online)

4 Results

Figure3 shows two retinal image examples from the DRIVE and CHASE
databases, respectively, the corresponding segmentation results obtained by U-
Net and the proposed Vessel-Net, and the ground truth. It reveals that Vessel-Net
is able to delineate most thin and thick vessels and preserve more spatial struc-
tures of retinal vessels than U-Net (pointed by blue and yellow arrows). Such
ability is essential for further topology estimation and reconstructions.

The retinal vessel segmentation results can be evaluated quantitatively by
accuracy (ACC), specificity (SP), sensitivity (SE), and AUC. Tables1 and 2
give the performance of the second human observer, several state-of-the-art
methods, and the proposed Vessel-Net on the DRIVE and CHASE databases.
Inter-observer variation is also included by assessing the second observer’s anno-
tations against the ground truth (first observer). It shows that our Vessel-Net
achieves the highest AUC (i.e. 0.14%/0.35% higher than the second best), the
highest accuracy (0.11%/0.24% higher than the second best), top-two sensitivity,
and comparable specificity on both databases. It also shows that, compared to
the inter-observer variation, our Vessel-Net produces a lower variation from the
ground truth. This implies that our method can be used to provide more stan-
dardized segmentation of vessel images than manual processing. Furthermore, we
suggest that, for potential clinical applications, our Vessel-Net can be combined
with other post-processing operators [7,8] to further improve the segmentation
of fine structures.
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Table 1. Comparison with state-of-the-art methods and 2nd observer on DRIVE.

Method AUC (%) | Accuracy (%) | Specificity (%) | Sensitivity (%)
2nd observer N.A 94.72 97.24 77.60
Fu et al. [7] N.A 95.23 N.A 76.03
Liskowski et al. [4] |97.90 95.35 98.07 78.11
Li et al. [16] 97.38 95.27 98.16 75.69
Orlando et al. [19] |95.07 N.A 96.84 78.97
Yan et al. [20] 97.52 95.42 98.18 76.53
Zhang et al. [6] 97.99 95.04 96.18 87.23
Wu et al. [8] 98.07 | 95.67 98.19 78.44
Vessel-Net (ours) | 98.21 95.78 98.02 80.38

Table 2. Comparison with state-of-the-art methods and 2nd observer on CHASE.

Method AUC (%) | Accuracy (%) | Specificity (%) | Sensitivity (%)
2nd observer N.A 95.45 97.11 81.05

Li et al. [16] 97.16 95.81 97.93 75.07

Orlando et al. [19] |95.24 N.A 97.12 72.77

Yan et al. [20] 97.81 96.10 98.09 76.33

Wu et al. [§] 98.25 96.37 98.47 75.38
Vessel-Net (ours) | 98.60 96.61 98.14 81.32

The ablation experiments were conducted on both databases to demonstrate
the performance gain caused by each component of the proposed Vessel-Net.
Table 3 shows, from top to bottom, the performance of baseline U-Net, R2U-Net,
the U-Net with traditional Inception block, the Vessel-Net without using multi-
path supervision (i.e. w/o MP), the Vessel-Net without IR blocks (w/o IR), and

Table 3. Ablation studies using the same experiment settings on both databases. (*The
results of U-Net are obtained from [11])

Database DRIVE(%) CHASE(%)
Indicator AUC |ACC |SP SE AUC |ACC |SP SE
U-Net [12]* 97.55 195.31 |98.20 | 75.37 |97.72 1 95.78 |97.01 | 82.88
R2U-Net [11] 97.84 195.56 |98.13 | 77.92 |98.15 1 96.34 | 98.20 | 77.56

U-Net with Inception | 97.76 | 95.50 |97.94 | 78.73 |98.14 |96.23 |97.87 |79.82
Vessel-Net w/o MP | 98.15 | 95.74 |98.24 | 78.65 |98.52 |96.55 |98.20 |80.09
Vessel-Net w/o IR 98.18 |95.74 |98.37 | 77.73 1 98.49 | 96.51 |98.13 |80.32
Vessel-Net (ours) 98.21 | 95.78 | 98.02 | 80.38 | 98.60 | 96.61 98.14 |81.32
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the proposed Vessel-Net. It reveals that, on both databases, (1) using both IR
blocks and multi-path supervision results in an AUC gain of 0.66% and 0.88%;
(2) using IR blocks to replace inception blocks results in an AUC gain of 0.39%
and 0.38%; (3) using multi-path supervision (IR blocks are available) further
results in an AUC gain of 0.06% and 0.08%; and (4) using IR blocks (multi-path
supervision is available) further results in an AUC gain of 0.03% and 0.11%.

5 Conclusion

In this paper, we present the Vessel-Net, a novel U-like deep convolutional
neural network, for retinal vessel segmentation in color fundus images. The
newly designed IR blocks and multi-path supervision are highly effective in cap-
turing rich multi-scale information. Our results on the DRIVE and CHASE
databases suggest that the proposed Vessel-Net achieved the new state-of-the-
art performance.
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